Электрический импеданс

Электрический импеда́нскомплексное сопротивление двухполюсника для гармонического сигнала.

Содержание

Аналогия с сопротивлением

В отличие от резистора, электрическое сопротивление которого характеризует соотношение напряжения и тока на нем, попытка применения термина электрическое сопротивление к реактивным элементам (катушка индуктивности и конденсатор) приводит к тому, что сопротивление идеальной катушки индуктивности стремится к нулю, а сопротивление идеального кондексатора — к бесконечности.

Такой результат вполне закономерен, поскольку сопротивление элементов рассматривается на постоянном токе, то есть на нулевой частоте, когда реактивные свойства не проявляются. Однако в случае переменного тока свойства реактивных элементов существенно иные: напряжение на катушке индуктивности и ток через конденсатор не равны нулю. То есть реактивные элементы на переменном токе ведут себя как элементы с неким конечным «сопротивлением», которое и получило название электрический импеданс (или просто импеданс). При рассмотрении импеданса используется комплексное представление гармонических сигналов, поскольку именно оно позволяет одновременно учитывать и амплитудные, и фазовые характеристики сигналов.

Определение

Импедансом \hat z(j \omega)\; называется отношение комплексной амплитуды напряжения гармонического сигнала, прикладываемого к двухполюснику, к комплексной амплитуде тока, протекающего через двухполюсник. При этом импеданс не должен зависеть от времени.


\hat z(j \omega)\;= \frac{\hat u(j \omega, t)\;}{i(j \omega, t)\;} = \frac{U(\omega) e^{j(\omega t + \phi_u(\omega))}}{I(\omega) e^{j(\omega t + \phi_i(\omega))}} = \frac {U(\omega) e^{j\phi_u(\omega)}}{I(\omega) e^{j\phi_i(\omega)}} = \frac{\hat U(j\omega)\;}{\hat I(j\omega)\;} (1)

Здесь

  • jмнимая единица;
  • ω — циклическая частота;
  • U(ω), I(ω) — амплитуды напряжения и тока гармонического сигнала на частоте ω;
  • φu(ω), φi(ω) — фазы напряжения и тока гармонического сигнала на частоте ω;
  • \hat U(j\omega)\;, \hat I(j\omega)\; — Комплексные амплитуды напряжения и тока гармонического сигнала на частоте ω;

Исторически сложилось, что обозначение импеданса, комплексных амплитуд и других комплекснозначных функций частоты записывают как f(jω), а не f(ω). Такое обозначение показывает, что мы имеем дело с комплексными представлениями гармонических функций вида ejωt. Кроме того, над символом, обозначающим комплексный сигнал или комплексный импеданс, обычно ставят «домик» или точку: \hat U(j\omega)\; чтобы отличать от соответствующих некомплексных величин.

Физический смысл

Алгебраическая форма

Если рассматривать комплексный импеданс как комплексное число в алгебраической форме, то действительная часть соответствует активному сопротивлению, а мнимаяреактивному. То есть двухполюсник с импедансом \hat z(j \omega)\; можно рассматривать как последовательно соединенные резистор с сопротивлением \Re(\hat z(j \omega)\;) и чисто реактивный элемент с импедансом \Im(\hat z(j \omega)\;)

Рассмотрение действительной части полезно при расчете мощности, выделяемой в двухполюснике, поскольку мощность выделяется только на активном сопротивлении.

Тригонометрическая форма

Если рассматривать импеданс как комплексное число в тригонометрической форме, то модуль соответствует отношению амплитуд напряжения и тока (сдвиг фаз не учитывается), а аргумент — сдвигу фазы между током и напряжением, то есть на сколько ток отстает от напряжения.

Ограничения

Понятие импеданса применимо, если при приложении к двухполюснику гармонического напряжения ток, вызванный этим напряжением, также гармонический той же частоты. Для этого необходимо и достаточно, чтобы двухполюсник был линейным. Если это условие не выполнено, то при вычислении импеданса множитель ejωt не сокращается в (1), то есть импеданс не может быть найден, поскольку невозможно получить выражение для импеданса, не зависящее от времени t.

Практически это означает, что импеданс может быть вычислен для любого двухполюсника, состоящего из резисторов, катушек индуктивности и конденсаторов, то есть из линейных пассивных элементов. Также импеданс хорошо применим для активных цепей, линейных в широком диапазоне входных сигналов (например, цепи на основе операционных усилителей). Для цепей, импеданс которых не может быть найден в силу указанного выше ограничения, бывает полезным найти импеданс в малосигнальном приближении для конкретной рабочей точки. Для этого необходимо перейти к эквивалентной схеме и искать импеданс для нее.

Вычисление импеданса

Идеальные элементы

Резистор

Для резистора импеданс всегда равен его сопротивлению R и не зависит от частоты:

zR = R (2)

Конденсатор

Ток и напряжение для конденсатора связаны соотношением:

i(t)=C \frac {dU}{dt} (3)

Отсюда следует, что при напряжении

\hat u(j \omega, t)\;= U(\omega) e^{j(\omega t + \phi_u(\omega))} (4)

ток, текущий через конденсатор, будет равен:

\hat i(j \omega, t)\;= C \frac {d}{dt} \left( U(\omega) e^{j(\omega t + \phi_u(\omega))} \right) = j \omega C U(\omega) e^{j(\omega t + \phi_u(\omega))} (5)

После подстановки (4) и (5) в (1) получаем:

\hat z_C(j \omega)\;= \frac {1}{j \omega C} (6)

Катушка индуктивности

Аналогичное рассмотрение для катушки индуктивности приводит к результату:

\hat z_L(j \omega)\;= j \omega L (7)

Общий случай

Для произвольного двухполюсника, состоящего из элементов с известным импедансом, нет необходимости производить приведенные выше вычисления с целью нахождения импеданса. Импеданс находится по обычным правилам расчета сопротивления сложной цепи, то есть используются формулы для сопротивления при параллельном и последовательном соединении резисторов (не путать с формулами емкости для последовательно и параллельно соединенных конденсаторов!). При этом все математические операции производятся по правилам действий над комплексными числами. Например, импеданс последовательно соединенных резистора, конденсатора и катушки индуктивности будет равен:

\hat z(j \omega)\;= R + \frac {1}{j \omega C} + j \omega L  

Экспериментальное измерение импеданса

Импеданс реальных элементов может быть измерен специальными приборами: измерителем RLC или анализатором импеданса. Эти приборы позволяют производить измерения в широком диапазоне частот и при различных напряжениях смещения.

Применение импеданса

Введение импеданса позволяет описывать поведение двухполюсника с реактивными свойствами при воздействии на него гармонического сигнала. Кроме того, в случае негармонического сигнала импеданс применяется столь же успешно. Для этого сигнал раскладывается на спектральные компоненты при помощи ряда Фурье или преобразования Фурье и рассматривается воздействие каждой спектральной компоненты. Вследствие линейности двухполюсника сумма откликов на спектральные компоненты равна отклику на исходный негармонический сигнал.

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home