Численное интегрирование

Численное интегрирование — вычисление значения определённого интеграла (как правило, приближенное), основанное на том, что величина интеграла численно равна площади криволинейной трапеции, ограниченной осью абсцисс, графиком интегрируемой функции и отрезками прямых x=a\,\! и x=b\,\!, где a\,\! и b\,\! — пределы интегрирования (см. рисунок).

Необходимость применения численного интегрирования чаще всего может быть вызвана отсутствием у первообразной функции представления в элементарных функциях и, следовательно, невозможностью аналитического вычисления значения определенного интеграла по формуле Ньютона-Лейбница. Также возможна ситуация, когда вид первообразной настолько сложен, что быстрее вычислить значение интеграла численным методом.

Содержание

Одномерный случай

Основная идея большинства методов численного интегрирования состоит в замене подынтегральной функции на более простую, интеграл от которой легко вычисляется аналитически. При этом для оценки значения интеграла получаются формулы вида

I \approx \sum_{i=1}^{n} w_i\, f(x_i),

где n\,\! — число точек, в которых вычисляется значение подынтегральной функции. Точки x_i\,\! называются узлами метода, числа w_i\,\! — весами узлов. При замене подынтегральной функции на полином нулевой, первой и второй степени получаются соответсвенно методы прямоугольников, трапеций и парабол (Симпсона). Часто формулы для оценки значения интеграла называют квадратурными формулами.

Метод прямоугольников

Метод прямоугольников получается при замене подынтегральной функции на константу. В качестве константы можно взять значение функции в любой точке отрезка \left[a, b\right]\,\!. Наиболее часто используются значения функции в середине отрезка и на его концах. Соответсвующие модификации носят названия методов средних прямоугольников, левых прямоугольников и правых прямоугольников. Формула для приближенного вычисления значения определенного интеграла методом прямоугольников имеет вид

I \approx f(x) (b-a),

где x=\frac{\left(a+b\right)}{2}, a\,\! или b\,\!, соответсвенно.

Метод трапеций

Если через концы отрезка интегрирования провести прямую, получим метод трапеций. Из геометрических соображений легко получить

I \approx \frac{f(a)+f(b)}{2} (b-a).

Метод парабол

Использовав три точки отрезка интегрирования можно заменить подынтегральную функцию параболой. Обычно в качестве таких точек используют концы отрезка и его среднюю точку. В этом случае формула имеет очень простой вид

I \approx \frac{b-a}{6}\left(f(a)+4f\left(\frac{a+b}{2}\right)+f(b)\right).

Увеличение точности

Приближение функции одним полиномом на всем отрезке интегрирования, как правило, приводит к большой ошибке в оценке значения интеграла.

Для уменьшения погрешности отрезок интегрирования разбивают на части и применяют численный метод для оценки интеграла на каждой из них.

При стремлении количества разбиений к бесконечности, оценка интеграла стремится к его истинному значению для любого численного метода.

Приведенные выше методы допускают простую процедуру уменьшения шага в два раза, при этом на каждом шаге требуется вычислять значения функции только во вновь добавленных узлах. Для оценки погрешности вычислений используется правило Рунге.

Метод Гаусса

Описанные выше методы используют фиксированные точки отрезка (концы и середину) и имеют низкий порядок точности (1, 1 и 3, соответственно). Если мы можем выбирать точки, в которых мы вычисляем значения функции f(x)\,\!, то можно при том же количестве вычислений подынтегральной функции получить методы более высокого порядка точности. Так для двух (как в методе трапеций) вычислений значений подынтегральной функции, можно получить метод уже не 1-го, а 3-го порядка точности:

I \approx \frac{b-a}{2}\left(f\left(\frac{a+b}{2} - \frac{b-a}{2\sqrt{3}} \right)+f\left(\frac{a+b}{2} + \frac{b-a}{2\sqrt{3}} \right) \right).

В общем случае, используя n\,\! точек, можно получить метод с порядком точности 2n-1\,\!. Значения узлов метода Гаусса по n\,\! точкам являются корнями полинома Лежандра степени n\,\!.

Значения узлов метода Гаусса и их весов приводятся в справочниках специальных функций. Наиболее известен метод Гаусса по пяти точкам.

Метод Гаусса-Кронрода

Недостаток метода Гаусса состоит в том, что он не имеет легкого (с вычислительной точки зрения) пути оценки погрешности полученного значения интеграла. Использование правила Рунге требует вычисления подынтегральной функции примерно в таком же числе точек, не давая при этом практически никакого выигрыша точности, в отличие от простых методов, где точность увеливается в разы при каждом новом разбиении. Кронродом был предложен следующий метод оценки значения интеграла

I \approx \sum_{i=1}^{n} a_i\, f(x_i) + \sum_{i=1}^{n+1} b_i\, f(y_i),

где x_i\,\! — узлы метода Гаусса по n\,\! точкам, а 3n+2\,\! параметров a_i\,\!, b_i\,\!, y_i\,\! подобраны таким образом, чтобы порядок точности метода был равен 3n+1\,\!.

Тогда для оценки погрешности можно использовать эмпирическую формулу

\Delta = \left(200 |I - I_G|\right)^{1.5},

где I_G\,\! — значение интеграла, оценненое методом Гаусса по n\,\! точкам. Библиотеки [gsl] и [SLATEC] для вычисления определенных интегралов содержат подпрограммы, использующие метод Гаусса-Кронрода по 15, 21, 31, 41, 51 и 61 точкам.

Интегрирование при бесконечных пределах

Методы Монте-Карло

Многомерный случай

В небольших размерностях можно так же применять квадратурные формулы, основанные на многочленах Лагранжа. Однако в больших размерностях эти методы становятся неприемлемыми из-за быстрого возрастания числа точек сетки и/или сложной границы области. В этом случае применяется метод Монте-Карло. Генерируются случайные точки в нашей области и усредняются значения функции в них. Так же можно использовать смешанный подход — разбить область на несколько частей, в каждой из которых (или только в тех, где интеграл посчитать не удаётся из-за сложной границы) применить метод Монте-Карло.

Литература

ISBN 5030033920 Д.Каханер, К.Моулер, С.Нэш. Численные методы и программное обеспечение (пер. с англ.). М.: Мир, 2001, 575 c.

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home