Топологическое пространство

Топологи́ческое простра́нство — основной объект изучения топологии. Понятие топологического пространства можно рассматривать как обобщение понятия геометрической фигуры, в котором мы отвлекаемся от свойств наподобие размера или точного положения частей фигуры в пространстве, и сосредотачиваемся только на взаимном расположении частей. Топологические пространства возникают естественно почти во всех разделах математики.

Содержание

Определение

Пусть дано множество X. Система T его подмножеств называется топологией на X, если выполнены следующие свойства:

  1. Объединение произвольного семейства множеств, принадлежащих T, принадлежит T,
  2. Пересечение конечного семейства множеств, принадлежащих T, принадлежит T,
  3. X и \varnothing принадлежат T.

Множество X вместе с заданной на нем топологией T называется топологическим пространством. Множества, принадлежащие T, называются открытыми множествами

Способы задания топологии

Не всегда удобно перечислять все открытые множества. Часто удобнее указать некоторый меньший набор открытых множеств, который порождает их все. Формализацией этого является понятие базы топологии: множество B открытых подмножеств топологического пространства (X, T) называется базой топологии T, если всякое открытое множество представляется как объединение множеств из B.

Еще более экономный способ задания топологии состоит в задании её предбазы — множества, которое становится базой, если к нему прибавить произвольные конечные пересечения его элементов.

Эквивалентным заданию всех открытых множеств, является способ через задание множества всех замкнутых множеств (т.е. всех дополнений к открытым множествам).

Естественным образом задаётся топология на подмножестве Y топологического пространства X — открытыми называются все те множества, содержащиеся в Y, которые являются пересечением какого-либо открытого множества в X с Y. Такая топология называется индуцированной.

Примеры

Вещественная прямая \R является топологическим пространством, если, например, назвать открытыми множествами произвольные (пустые, конечные или бесконечные) объединения конечных или бесконечных интервалов. Множество всех конечных открытых интервалов {(a, b) | a, b из \R} является базой этой топологии. Это — стандартная топология на прямой. Вообще же на множестве вещественных чисел можно ввести очень разнообразные топологии. Например, \R_\to, прямая с «топологией стрелки» с открытые множества имеют вид (a,\infty). Или топология Зариского в которой любое замкнутое множество это конечное множество точек.

Вообще, евклидовы пространства \R^n являются топологическими пространствами. Базой их стандартной топологии можно выбрать открытые шары или открытые кубы.

Обобщая далее, всякое метрическое пространство является топологическим пространством, базу топологии которого составляют открытые шары. Таковы, например, изучаемые в функциональном анализе бесконечномерные пространства функций.

Рассмотрим множество С(X, Y) непрерывных отображений топологического пространства X в топологическое пространство Y. Оно является топологическим пространством относительно следующей топологии, которая называется компактно-открытой. Зададим предбазу множествами C(U, K), состоящими из отображений, при которых образ компакта K в X лежит в открытом множестве U в Y.

Произвольное множество X можно сделать топологическим пространством, если называть открытыми все его подмножества. Такая топология называется дискретной. В ней любые множества являются открытыми. Другой предельный случай — назвать открытыми минимально возможное количество подмножеств X. А именно ввести тривиальную топологию — в ней открытыми являются лишь пустое множество и само пространство X.

Непрерывные отображения

Понятие топологии является минимально необходимым для того, чтобы говорить о непрерывных отображениях. Интуитивно непрерывность есть отсутствие разрывов, то есть близкие точки при непрерывном отображении должны переходить в близкие. Оказывается, для определения понятия близости точек можно обойтись без понятия расстояния. Именно это и есть топологическое определение непрерывного отображения.

Отображение топологических пространств f: (X,TX) → (Y,TY) называется непрерывным, если прообраз всякого открытого множества открыт.

Категория Top всех топологических пространств, морфизмы которой — непрерывные отображения, является одной из важнейших категорий в математике. Попыткам классифицировать объекты этой категории при помощи алгебраических инвариантов посвящен раздел математической науки, который называется алгебраической топологией. Изучению понятий непрерывности, а также других понятий, таких как компактность или отделимость, как таковых, без обращения к другим инструментам, посвящена общая топология.

См. также

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home